Состав.
Стеклоиономерный цемент является весьма привлекательным материалом прежде всего потому, что на его основе имеется возможность получить огромное разнообразие вариантов состава, и этим он принципиально отличается от цинк-фосфатного цемента. Основными компонентами стеклоиономерного цемента являются стекло, поликислота, вода и винная кислота.
Состав стекла можно менять в очень широком диапазоне, придавая ему различные
свойства, и дополнительно к этому, есть возможность получать путем сополимеризации большое число комбинаций поликислот. В противоположность этому цинк-фосфатные цементы, оптимизированные по соотношению порошок - жидкость и концентрации фосфорной кислоты, практически не поддаются совершенствованию. Вполне очевидно, что широкие возможности для создания модификаций стеклоиономеров несут в себе как положительные, так и отрицательные моменты и это отразилось в истории развития стеклоиономерных цементов, начиная с 70 —х годов.
Поэтому нельзя было утверждать, что создание стеклоиономерных цементов с самого начала проходило гладко. Доказательством этому может служить тот факт, что предлагаемые сегодня на рынке материалы этого класса принципиально отличаются от тех, которые были предложены в самом начале их клинического применения. Ранние материалы состояли из порошка стекла, к которому добавляли концентрированный раствор полиакриловой кислоты. AS РА (Dentsply De Trey Ltd, Weybridge, Великобритания) — так назывался первый материал, выпущенный в 1976 году.
Рис. 2.3.1. Схематическое представление взаимоотношений между различными стоматологическими цементами на основе порошков оксида цинка и алюмосиликатного стекла, а также жидкостей, состоящих из фосфорной и полиакриловой кислот
Стекло.
Стекла для стеклоиономерных цементов содержат три основных компонента: оксид кремния (Si0
2
) и оксид алюминия (А1
2
0
3
), которые перемешивали с флюсом фторида кальция (CaF
2
), как показано на Рис. 2.3.2. Состав стекла в основном ограничен
центральной областью фазовой диаграммы потому, что старались получить полупрозрачное стекло.Смесь, которая содержит также фториды натрия и алюминия, фосфаты кальция или алюминия как дополнительные флюсы, сплавляется при высокой температуре, и расплавленная масса затем резко охлаждается и измельчается до тонкого порошка. Размер частиц порошка зависит от цели его последующего применения. Для пломбировочных
материалов максимальный
размер частиц составляет 50 мкм, в то время как для
фиксации и прокладок — менее 20 мкм.
Скорость высвобождения ионов из стекла, что является важным фактором в схватывании, растворимости и высвобождении фторида, является функцией конкретного вида стекла (см. ниже). Стекло также играет основную роль в эстетике пломбы, так как она зависит от обоих факторов — коэффициента преломления стекла и присутствия в нем пигментов.
Поллкксллта.
Имеется большой ряд аналогов полиакриловой кислоты, который при сочетании с вариантами моле
А
Рис. 2.3.2. Состав стекла, используемого в стеклоиономерных цементах
Рис. 2.3.3. Кислоты , используемые в составах стеклоиономерных цементов
лярнои
массы и
структуры дает возможность создания огромного числа модификаций. В современных композициях наиболее часто используют поликислоты, которые являются сополимерами акриловой и итаконовой кислот или акриловой и малеиновой кислот (Рис. 2.3.3).
Относительно новой модификацией является стеклоиономерный цемент, основой которого служит сополимер винилфосфоновой кислоты. Эта кислота на много сильнее других, используемых в производстве стеклоиономерных цементов, поэтому состав цемента на основе этой кислоты тщательно контролируется с целью получения хороших рабочих характеристик; предполагается также , что в этом случае можно получить материал с прочностью, обеспечивающую более высокую долговечность, а также повышенную водостойкость.
Для силикатных цементов существует оптимальная концентрация водного раствора кислоты, но для стеклоиономеров — это не так. Чем более высокие концентрации поликислоты применяются в составе стеклоиономерного цемента, тем выше его прочность и устойчивость к влаге. Ограничивает рост этих показателей консистенция пасты цемента. Вязкость жидкости цемента зависит от концентрации поликислоты и ее молекулярной
массы, которая может изменяться от 10 ООО до 30 ООО Винная кислота является важным компонентом стеклоиономерного цемента, так как она оказывает существенное влияние на рабочее время и время твердения.
Форма выпуска.
Порошок-жидкость.
Многие стеклоиономерные цементы состоят из порошка стекла, к которому добавляют соответствующую жидкость. Производство порошка описано выше, а жидкость является водным раствором полиакриловой кислоты или полималеиновой и винной кислот. Однако у такой композиции в скором времени был выявлен ряд недостатков, что потребовало внести в нее некоторые изменения.
Одним из недостатков была избыточная растворимость стеклоиономерного цемента в слюне, сочетающаяся с его замедленной реакцией схватывания. Не ясен также вопрос оптимального соотношения порошок-жидкость. Некоторые производители снижают содержание порошка цемента, для того чтобы получить гладкую кремоподобную массу, однако это приводит к замедлению схватывания и получению более ослабленного цемента, который в значительной степени подвержен растворению (Рис. 2.3.4).
Безводные цементы.
Сегодня многие стеклоиономерные цементы отверждаются после добавления в порошок необходимого количества дистиллированной воды. Стеклянный порошок содержит добавки высушенной при замораживании поликислоты и порошка винной кислоты. Первый продукт, изготовленный по такому методу, появился на рынке в 1981 году. Новые композиции цементов, называемые безводными, содержат порошок и жидкость. Порошок состоит из алюмосиликатного стекла, к которому добавляют поликислоту и винную кислоту в сухом порошкообразном виде, а жидкостью является просто дистиллированная вода.
Капсулы.
Общепризнанно, что достижение точного соотношения порошок-жидкость все еще остается сложной задачей. Для получения качественной
массы пломбировочного материала требуется энергичное смешивание, для того, чтобы обеспечить полное введение порошка в жидкость. Одним из путей рационального решения этого вопроса является использование предварительно дозированных капсул.Состав порошка различных капсул не обязательно одинаков, поэтому их содержимое не рекомендуется смешивать между собой. Например, для обеспечения наиболее благоприятных рабочих и физических свойств, пломбировочные материалы имеют большие по размеру частицы стеклянного наполнителя, чем цементы для
фиксации протезов. Сходным образом и используемые жидкости могут отличаться по составу для того, чтобы подходить к конкретной составу стекла и придавать цементу нужное рабочее время и время его схватывания. С этим вопросом детально ознакомимся позже, при рассмотрении практического приготовления и использования различных составов цемента.
Клиническое значение.
Трудности дозирования и смешивания точного количества порошка и жидкости для стеклоиономерных цементов можно преодолеть путем использования дозированных капсул, с помощью которых можно добиться высокой воспроизводимости результатов работы.
Реакция отверждения.
Отверждение стеклоиономерных цементов идет по типу следующей окислительно-восстановительной реакции:.
M0Si02 + Н2А МА + S i0 2 + Н20 стекло кислота соль силикагель Процесс отверждения включает три протикающие почти одновременно стадии:.
растворение;.
образование геля;.
затвердевание или отверждение.
Это происходит из-за различных скоростей, с которыми ионы высвобождаются из стекла, и скорости образования солевой матрицы (Рис. 2.3.5). Как видно из этого графика ионы кальция высвобождаются быстрее, чем ионы алюминия. Это происходит потому, что ионы кальция очень непрочно связаны со структурой стекла, в то время как ионы алюминия образуют часть решетки стекла, которую труднее разрушить. А солевую матрицу как раз и образуют ионы кальция и алюминия. Ионы натрия и фторида не принимают участия в процессе отверждения, но соединяются с образованием несвязанного фторида натрия.
Раатввреене.
Когда жидкий компонент материала или воду смешивают с порошком, растворенная кислота реагиру-
Рис. 2.3.4. Влияние изменений соотношения порошокжидкость на
свойства стеклоиономерных цементовет с наружным слоем стекла. Этот
слой обедняется ионами алюминия, кальция, натрия и фторида, так что остается только
гель двуоксида кремния (Рис. 2.3.6).
Ионы водорода, которые освобождаются из карбоксильных групп по мере диффузии в стекло поликислотной цепи, ответственны за потерю стеклом ионов кальция, алюминия и фторида. Реакция отверждения цемента — медленный процесс и требуется некоторое время для достижения стабильного состояния материала. Полупрозрачность отвержденного цемента вначале не видна и проявляется не ранее, чем через 24 часа после пломбирования.
И хотя материал кажется твердым сразу после затвердевания (обычно в течение 2-3 мин в зависимости от целевого назначения — в качестве его пломбировочного цемента или для
фиксации ), он достигнет своих конечных физических и механических свойств только в течение одного месяца.
Образование геля.
Первоначальное схватывание связано с быстрым действием ионов кальция, которые, будучи двухвалентными и в начале в избытке, реагируют активнее с карбоксильными группами кислоты, чем трехвалентные ионы алюминия (Рис. 2.3.7). Эта фаза желапшнизащи или схватывания в процессе реакции отверждения.
Ряд процессов может происходить, если пломба не защищена от действия внешних факторов во время этой критической фазы. Ионы алюминия могут диффундировать из материала, и цемент может их лишиться, таким образом, утрачивается возможность образования поперечных связей с цепочками полиакриловой
Рис. 2.3.5. Различные скорости высвобождения ионов из стекла
Рис. 2.3.6. Начальные стадии реакции отверждения стеклоиономерного цемента
кислоты. Если теряется вода, не происходит завершения реакции отверждения. В обоих случаях в результате пломбировочный материал будет ослабленным. Дополнительная влага может абсорбироваться пломбой, но в ней могут быть остатки крови или слюны, что приведет к ухудшению эстетических свойств пломбы, которая будет тусклой с выраженным белым оттенком. Загрязнение влагой может вызвать появление
дефектов пломбы. Поэтому, следует избегать проникновения в пломбу как загрязненной влаги, так и ее пересыхания.
Затвердевание.
После фазы образования геля наступает фаза твердения, которая может продолжаться до 7 дней. Требуется около 30 мин для того взаимодействия с ионами алюминия, которые обеспечивают конечную прочность цемента. В отличие от ионов кальция трехвалентные ионы алюминия обеспечивают высокую степень сшивания полимерных молекул поперечными связями (Рис. 2.3.8).
В период образования алюминиевых солевых мостиков вода связывается в геле двуоксида кремния, который окружает нерастворенное остаточное ядро каждой частицы стекла. Когда цемент полностью прореагирует, показатель его растворимости становится минимальным. Конечная структура стеклоиономера показана на Рис. 2.3.9. В нее входят частицы стекла, каждая из которых окружена гелем двуоксида кремния в матрице из поперечно-связанной полиакриловой кислоты.
В то время как в других пломбировочных материалах стекло должно противостоять высвобождению ионов, в стеклоиономерных цементах контролируемое высвобождение ионов кальция и алюминия является важным свойством для затвердения. Правильный
Рис. 2.3.7. Фаза гелеобразования в процессе отверждения
Рис. 2.3.8. Фаза окончательного затвердевания в процессе отверждения