Мой сайт

Меню сайта
Статистика

Онлайн всего: 11
Гостей: 11
Пользователей: 0
Форма входа
Главная » 2014 » Январь » 2 » Классификация современной стоматологической ке�
08:40
 

Классификация современной стоматологической ке�

Классификация современной стоматологической керамики

14 Июня в 9:33

Одним из самых серьезных недостатков описанных выше первых составов стоматологического фарфора было отсутствие прочности и хрупкость, которые серьезно ограничивали применение этого материала. Еще в 1903 году Land в журнале Dental Cosmos описал способ изготовления фарфоровых коронок и упомянул об их хрупкости. Pincus представил принцип процесса изготовления керамического винира в журнале Californian Denial Association Jornal, но также подчеркнул низкую прочность фарфора того времени. В те годы по причинам эстетики каолин не добавляли в состав стоматологического фарфора или добавляли в малых количествах.

Существует два решения, позволяющих избавиться от проблемы низкой прочности и хрупкости стоматологического фарфора. Первое — обеспечить стоматологический фарфор опорой из более прочной подлежащей структуры. Второе решение — разработать керамику, обладающую более высокой прочностью и меньшей хрупкостью. В связи с этим, всю стоматологическую керамику можно разделить на три категории в зависимости от системы упрочнения:

• керамика с упрочненным керамическим каркасом;
• керамика для фиксации полимерными адгезивами;
• металлокерамика

Основным принципом, позволяющим достигнуть хорошего эстетического результата протезирования, являлось создание прочной опоры для керамики. Очевидно, что идеальная керамика должна обладать как прочностью, так и высокими эстетическими свойствами, чтобы отвечать как функциональным, так и эстетическим требованиям.

При использовании упрочненных керамических каркасов, опорой для эстетической керамики будет другой материал, обладающий более высокой проч ностью и меньшей хрупкостью, но, возможно, худши ми эстетическими свойствами.

При фиксации керамических протезов полимерными адгезивами, она будет опираться на твердые ткани препарированного зуба, то есть, непосредственно на эмаль и дентин. В этом случае, керамика обеспечит необходимое эстетическое качество протезу, а прочность реставрации будет определяться ее адгезионной прочностью в соединении с твердыми тканями зуба.

Клиническое значение

Для керамических зубных протезов, которые фиксируют полимерными адгезивными цементами, успех лечения будет зависеть от прочности адгезионной фиксации, поскольку разрушение этого соединения приведет к утрате опоры для керамики и, в конечном итоге, к разрушению последней.

Подобный подход стал возможен только с разработкой способов применения адгезивов для эмали и дентина и адгезионной фиксации керамики. Сочетание эстетики и высокой прочности было бы идеальным решением, поскольку позволило бы надеяться не только на прочность адгезионной связи, но и на прочность самого материала, а также дало бы возможность разработать цельнокерамические мостовидные протезы с адгезионной фиксацией.

В случае металлокерамических зубных протезов эстетичная керамика опирается на прочный металлический каркас с высокой вязкостью разрушения.

Упрочненные цельнокерамические каркасы

В ранней публикации Land с соавторами было показано, что одной из проблем, связанных с использованием цельнокерамических коронок для передних зубов, является опасность разрушения фарфора, начиная от внутренней поверхности фиксации до внешней поверхности протеза. Некоторое повышение прочности фарфора было достигнуто с разработкой вакуумных зуботехнических печей, которые позволяли снизить пористость материала и повысить его прочность при изгибе от 20-30 МПа до приблизительно 50-60 МПа. Однако, эта прочность также оказалась недостаточной, поэтому начались поиски каркасного материала, который смог бы обеспечить необходимую прочность и упругость для избавления от разрушений, связанных с развитием трещин от внутренней к внешней поверхности коронки.

Поскольку керамика склонна к разрушению при одной и той же критической деформации порядка ~0,1 %, поэтому повысить прочность материала можно только путем повышения его модуля упругости. Если, одновременно создать препятствия развитию трещин, то фарфоровый материал сможет выдержать без разрушения более высокие деформации, в результате чего его прочность повысится (Рис. 3.4.5).

stomatologicheskoe_materialovedenie_3.4.5.jpg

Рис. 3.4 .5. Упрочнение керамики с помощью: (a) повышения модуля упругости материала; (b) повышения сопротивления развитию трещин

Поскольку прочность при растяжении оценить очень сложно (из-за большого разброса результатов), обычно у материала определяют прочность при изгибе. Несмотря на то, что нитриды и карбиды кремния привлекательны с точки зрения прочности, они непригодны из-за сложности изготовления из них индивидуальных коронок, неподходящего темного цвета и термической несогласованности с эстетическими фарфоровыми покрытиями.

Клиническое значение


Оксиды алюминия и циркония обладают белизной и прочностью, поэтому в настоящее время эти материалы использованы в ряде систем для изготовления цельно-керамических зубных протезов.

В середине 60-х годов McLean и Huges разработали каркасный материал на основе полевошпатного стекла, упрочненного оксидом алюминия, часто называемый алюмооксидным фарфором для жакет-коронок. С тех пор были разработаны другие составы и технологии для изготовления цельнокерамических реставраций. В 1988 году была создана стеклонасыщенная высокопрочная керамика для каркасов зубных протезов (In-Ceram, Vita Zahnfabrik, Bad Sackingen, Германия), а в начале девяностых появились каркасы, полностью состоящие из плотноспеченного оксида алюминия (Techceram, Techceram Ltd., Procera AllCeram, Nobel Biocare).

Фарфоровые жакет-коронки, упрочненные оксидом алюминия (A0K)

В начале 60-х годов McLean и Huges предложили упрочнение опакового (грунтового) слоя коронок оксидом алюминия. Предложенный материал представлял собой полевошпатное стекло с добавкой 40 — 50% оксида алюминия (Рис. 3.4.6). Частицы оксида алюминия обладали намного большей прочностью, чем стекло, они более эффективно предупреждали развитие трещин, чем кварц, и, по существу, представляли собой препятствия для распростанения трещины (Рис. 3.4.7). В то время как прочность при изгибе полевошпатных фарфоров, в лучшем случае, составляла не более 60 МПа, добавка оксида алюминия позволяла повысить этот показатель до 100 — 150 МПа.

stomatologicheskoe_materialovedenie_3.4.6.jpg

Рис. 3.4.6. Снятая на растровом микроскопе микрофотография каркасного материала, на которой изображены частицы оксида алюминия, внедренные в стеклянную матрицу, состоящую из застывшего расплава полевого шпата

stomatologicheskoe_materialovedenie_3.4.7.jpg

Рис. 3.4.7. Частицы оксида алюминия действуют, как препятствия для развития трещины

При изготовлении коронки опаковый слой изготавливали из алюмооксидного фарфора. Однако по-прежнему приходилось использовать непрочные композиции дентинного и эмалевого фарфора, поскольку получение полупрозрачной алюмооксидной керамики пока оставалось невозможным — добавка оксида алюминия приводила к появлению блеклой окраски и непрозрачности.

Основным назначением алюмооксидных коронок является восстановление передних зубов. Несмотря на значительное повышение прочности, этот показатель все еще оставался низким, что не позволяло использовать алюмооксидный фарфор для восстановления групп жевательных зубов, а возможность изготовления из алюмооксидного фарфора мостовидных протезов, хотя бы из трех единиц, и вовсе не рассматривалась.

Клиническое значение

Потребность в разработке более прочных каркасных материалов из керамики все еще существует, если подразумевается использовать керамику для восстановления жевательных зубов.

Стеклонасыщенная высокопрочная керамика для изготовления цельнокерамических каркасов

В состав полевошпатного стекла можно вводить не более 50-60 % (по объему) оксида алюминия из-за ограничений, связанных с проведением фриттования. Альтернативным подходом стало изобретение новой системы, названной In-Ceram (Vita). В составе материала для изготовления керамических каркасов в этой системе содержится около 85% оксида алюминия.

Керамический каркас моделируют на огнеупорной модели из тонкого шликера, содержащего порошок оксида алюминия. Этот процесс называется шликерным литьем. После сушки штампика, его обжигают в течение 10 час при температуре 1120°С. Температура плавления оксида алюминия, необходимая для полного уплотнения порошка за счет жидкофазового спекания, очень высока, поэтому происходит только твердо- фазовое спекание материала. Следовательно, полученный подобным образом керамический каркас, образован частицами оксида алюминия, спекшимися в точках контакта, поэтому он обладает пористой структурой. Прочность пористого каркаса невысока — она составляет всего 6-10 МПа. Затем пористый каркас насыщают лантановым стеклом, которое плавят при температуре 1100°С в течение 4-6 часов. Лантановое стекло обладает очень низкой вязкостью расплава. Этот расплав способен проникать в поры, благодаря чему получается плотный керамический материал. Для создания функциональной и эстетически привлекательной формы коронки каркас облицовывают обычной стоматологической полевошпатной керамикой.

Клиническое значение

Каркасная керамика данного типа, как было заявлено, обладает очень высокой прочностью при изгибе (400 — 500 МПа), что позволяет применять ее для изготовления коронок передних и жевательных зубов с прекрасным результатом.

Было сделано несколько попыток изготовления консольных протезов для передних и жевательных зубов из трех единиц с применением стеклонасыщенной керамики; такие попытки для данного вида керамики являются достаточно смелыми, но представляются весьма перспективными.

Аналогичный подход был использован для изготовления цельнокерамических каркасов из магнезиальной шпинели (MgAl204) или диоксида циркония, заменивших оксид алюминия. Материал на основе магнезиальной шпинели In-Ceram-Spinel позволял получить более высокое эстетическое качество по сравнению с алюмооксидным In-Ceram-Alumina, однако отличался несколько более низкой прочностью при изгибе (~350МПа), поэтому этот материал рекомендуется использовать для изготовления вкладок. In-Ceram-Zirconia получен на основе керамики In-Ceram-Alumina, в состав которой введена добавка 33% масс, диоксида циркония. In-Ceram-Zirconia отличается повышенной прочностью и позволяет изготавливать керамические каркасы с прочностью ~700 МПа.

Альтернативным подходом к описанной выше технологии шликерного литья является изготовление цельнокерамических реставраций с применением технологии CAD CAM (компьютерное моделирование/ компьютерное управление процессом изготовления).

Эта технология изготовления реставраций используется как в системе CEREC (Siemens), так и в системе Celay (Vident). Блоки из керамики In-Ceram-Spinel/Alumina/Zirconia, подлежащие механической обработке для получения готовых реставраций, изготовляются путем сухого прессования, что позволяет получить более плотный и более однородный материал с открытой пористостью, благодаря чему повышается прочность керамики при изгибе после ее насыщения лантановым стеклом.

Керамические каркасы из чистого оксида алюминия

Было бы логичным после разработки керамики, упрочненной оксидом алюминия, о которой говорилось выше, рассмотреть возможности использования цельнокерамических каркасов, изготовленных из чистого оксида алюминия. На рынке такие каркасы из чистого оксида алюминия представляют по меньшей мере два производителя — Procera AllCeram (Nobel Biocare АВ, Gotenburg, Швеция) и Techceram system (Techceram Ltd, Shipley, Великобритания). Потенциальными преимуществами такой керамики являются ее более высокая прочность и лучшая светопроницаемость (полупрозрачность), чем у стеклонасыщенных каркасных материалов.

Процесс изготовления керамических каркасов Procera AllCeram состоит из снятия оттиска, изготовления штампика, сканирования геометрии штампика и моделирования желаемой формы реставрации на экране компьютера с помощью использования специально разработанной для этого компьютерной программы, передачи информации через модем в лабораторию в Стокгольме. Все это выполняется в специально уполномоченных зуботехнических лабораториях, ставших членами сети Procera Network. Керамические каркасы изготовляют по особой технологии, в которую входит спекание частого оксида алюминия со степенью очистки 99,9% при температурах 1600 — 1700°С, что позволяет получить плотноспеченный материал с отсутствием пористости.

Керамические каркасы затем отсылают в зуботехническую лабораторию для нанесения эстетического покрытия, представляющего собой полевошпатные стекла, совместимые с плотноспеченным алюмооксидом. Время технологического цикла составляет около 24 час. Прочность при изгибе плотноспеченного алюмооксидного каркасного материала составляет около 700 МПа, что близко совпадает с аналогичным показателем керамики ln-Ceram-Zirconia.

В системе Techceram применен совершенно иной подход. Полученный оттиск можно отослать на фирму Techceram Ltd, где по нему изготовят специальный штампик, на который методом горячеплазменного напыления из плазменной пушки будет осажден оксид алюминия. Плотность керамических каркасов составляет 80-90%. Для достижения более высокой прочности и прозрачности, каркасы, полученные методом напыления в горячей плазме, подлежат дальнейшему спеканию при температуре 1170°С. Готовый керамический каркас отсылают в зуботехническую лабораторию, где зубные техники-керамисты создадут анатомическую форму и воспроизведут внешний вид натуральных зубов с помощью нанесения полевошпатных стекол.

Клиническое значение

Одним из потенциальных преимуществ керамических каркасов из чистого плотноспеченного оксида алюминия является их светопроницаемость (полупрозрачность), которая выше, чем у материалов, представляющих собой композиции стекла и оксида алюминия.

Основным недостатком всех вышеупомянутых высоко прочных цельнокерамических каркасов является то, что они не поддаются протравливанию кислотой для создания микромеханической связи с их поверхностью, хотя некоторая связь с материалом цемента все-таки может возникнуть за счет шероховатости поверхности каркасов после их изготовления. Это объясняется тем, что внутренняя поверхность протеза, предназначенная для фиксации, состоит в основном из оксида алюминия, а не из оксида кремния, и потому никакие из существующих аппретов не могут обеспечить прочную связь между керамическим каркасом и полимерами. Без наличия эффективного аппретирующего агента или поверхности, обладающей идеальной микромеханической ретенцией, все эти плотноспеченные цельнокерамические каркасы будут непригодными для фиксации полимерными адгезивами на твердых тканях зубов, и поэтому не позволят реализовать дополнительные преимущества, связанные с применением метода адгезионной фиксации керамики.

Клиническое значение

Упрочнение каркасной керамики основано на повышении прочности и ударной вязкости керамического материала и правильной конструкции протеза, что позволит ему выдерживать окклюзионные нагрузки.

Основы стоматологического материаловедения
Ричард ван Нурт


http://medbe.ru/materials/stomatologicheskoe-materialovedenie/klassifikatsiya-sovremennoy-stomatologicheskoy-keramiki/

Похожие статьи

Большинство из нас знакомы с нержавеющей сталью в виде широко используемых разнообразных изделий как бытового, так и промышленного назначения.

Последнее время значительно увеличивается объем протезирования с использованием предварително изготовленных заготовок из пластмасс, таких как композитные в...

Низкая прочность соединения между драгоценными металлами и полимерными адгезивами является следствием низкой химической активности поверхности сплавов драг...

Способность соединения полимеров с металлами вызывает растущий интерес, поскольку создаются условия для дальнейшего расширения использования такой возможно...

В недалеком прошлом цельнокерамические реставрации фиксировали только с помощью традиционных цементов, таких как цинк-фосфатный, цинк-поликарбоксилатный и ...

Цинк-поликарбоксилатные цементы внедрены в стоматологическую практику в конце 60-х годов, после того, как у одного из стоматологов Манчестера появилась зам...

Цинк-фосфатный цемент один из первых цементов, появившихся в стоматологической практике, который широко используется и по настоящее время.

Прочность фиксации протеза в этих случаях зависит от качества препарирования зуба и точности подгонки реставрации, так как цинк-фосфатный цемент не обладае...

Просмотров: 3585 | Добавил: resped | Рейтинг: 0.0/0
Всего комментариев: 0
Поиск
Календарь
«  Январь 2014  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031
Архив записей
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Copyright MyCorp © 2024
    Сделать бесплатный сайт с uCoz